

Topics of Discussion

Agriculture.Mo.Gov

- New Datums
- Low Distortion Projection System
- State Plane Coordinate System Layers
- LDP Coordinate System Design
- Statewide Zone Layer
- Retirement of the U.S. Survey foot
- Timeline for the new system

Changes in the Future

 NAVD 88 replaced with North American-Pacific Geopotential Datum of 2022 (NAPGD2022)

 NAD 83(2011) replaced with North American Terrestrial Reference Frame of 2022(NATRF2022)

Agriculture.Mo.Go

- State Plane Coordinate System of 2022 (SPCS2022)
- · Geoid2022

Map Projections

- Used to convert a position from geographic (lat., long.) to rectangular (X,Y) coordinate values
 Represent a portion of the round ellipsoidal shape
- Represent a portion of the round ellipsoidal shaped earth to a "Developable" map projection that can be made into a flat surface
- Flat surface = Cartesian Coordinates (X,Y) = easier to calculate

Agriculture.Mo.Go

Map Projections

Two Types of Distortion

- Angular: Convergence angle for conformal projections
- Linear: Difference between grid inverses (map distance) and corresponding ground/horizontal distances

Agriculture.Mo.G

Agriculture.Mo.Gov

Linear Distortion

- Can be positive or negative
- Positive distortion the grid length is LONGER than the "true" horizontal length
- Negative distortion the grid length is SHORTER than the "true" horizontal length

Line	ear Dist	ortion	
PPM	Ratio	feet/mile	0
5	1:200,000	0.0264	
20	1:50,000	0.1056	
50	1:20,000	0.264	
100	1:10,000	0.528	
200	1:5,000	1.056	
300	1:3,333	1.584	
500	1:2,000	2.64	
1000	1:1,000	5.28	Participa
	1418	Agrica	lture.Mo.Gov

Linear Distortion

- Varies according to:
 - 1. Earth curvature (distance from projection axis)
 - 2. Height above or below the projection surface

Horizontal Linear Distortion of Projected Coordinates due to Earth Curvature (From Michael Dennis)

Maximum zone width for	Maximum linear horizontal distortion, δ				
secant projections (km and miles)	Parts per million (mm/km)	Feet per mile	Ratio (absolute value)		
25 km (16 miles)	±1 ppm	±0.005 ft/mile	1:1,000,000		
57 km (35 miles)	±5 ppm	±0.026 ft/mile	1:200,000		
81 km (50 miles)	±10 ppm	±0.05 ft/mile	1:100,000		
114 km (71 miles)	±20 ppm	±0.1 ft/mile	1:50,000		
180 km (112 miles)	±50 ppm	±0.3 ft/mile	1:20,000		
255 km (158 miles) e.g., SPCS*	±100 ppm	±0.5 ft/mile	1:10,000		
510 km (317 miles) e.g., UTM ⁺	±400 ppm	±2.1 ft/mile	1:2,500		
tate Plane Coordinate System; z niversal Transverse Mercator; zc	one width shown is va one width shown is val	lid between ~0° and 4 id between ~30° and 6	5° latitude 60° latitude		

Height below (–)	Maximum linear horizontal distortion, δ			
and above (+) projection surface	Parts per million (mm/km)	Feet per mile	Ratio (absolute value	
±30 m (±100 ft)	±4.8 ppm	±0.025 ft/mile	~1:209,000	
±120 m (±400 ft)	±19 ppm	±0.10 ft/mile	~1:52,000	
±300 m (±1000 ft)	±48 ppm	±0.25 ft/mile	~1:21,000	
+600 m (+2000 ft)*	–96 ppm	-0.50 ft/mile	~1:10,500	
+1000 m (+3300 ft)**	-158 ppm	-0.83 ft/mile	~1:6,300	
+4400 m (+14,400 ft) ⁺	-688 ppm	-3.6 ft/mile	~1:1,500	

Projected Coordinate Systems Include: 1. Projection Type 2. Geodetic Datum 3. Linear Unit

2. Geodetic Datum

- When the ellipsoid model is oriented and positioned in space, it forms a "horizontal geodetic datum"
- Examples
 - North American Datum of 1927 (NAD 27)
 - North American Datum of 1983 (NAD 83)
 - North American Terrestrial Reference Frame of 2022 (NATRF2022)

Agriculture.Mo.Gov

	S	state		Statisti	cs	
State	Number of Zones	Max (ppm)	Min (ppm)	Percentage of State less than 10 (ppm)	Percentage of State less than 20 (ppm)	
Kansas	20	26.0	-26.9	68.33%	98.80%	
Iowa	14	25.9	-25.9	73.63%	99.61%	
Oregon	39		- 50 ppm			
Indiana	92 (57)	Extreme Value = About 24 ppm, 95% less than 13 ppm, 99% than 18 ppm				
Nebraska	95		7 Zones Extreme Value > +/- 25 ppm			
Wisconsin	58		Extrem	e is about +/- 50	ppm	
Minnesota	86			Not Published		

		_
		_

Preliminary LDP Design

- Created a point coverage of 26.8 million points over the entire state on 3 arc second grid (roughly 303 ft. N-S and 238 ft. E-W)
- Elevated points from the National Elevation
 Data set
- Reduced points to ellipsoid heights
- Computed distortion statistics moving the central meridian or standard parallel, using different scales and projection types

Agriculture.Mo.Go

Agriculture.Mo.Gov

Preliminary LDP Design

- Cities contained within the zone
- Counties' boundaries used as zone boundaries
- Counties with similar elevations were grouped together
- Zones were generally narrow as possible yet meeting the width requirements set by NGS
- Zones were configured to include as many counties as possible, while trying to keep as much of the zone as possible under 20 PPM linear distortion

Preliminary LDP Design

- Zones were named using most populated city
- Total of 31 Zones
 - I7 Zones using a Lambert map projection
 - 14 Zones using a Transverse Mercator map projection
- False Northing and Eastings differ from previous systems

Agriculture.Mo.Go

Agriculture.Mo.Gov

Preliminary LDP Design

- The Easting coordinates were designed to help identify the zone.
- The coordinate system is designed where the zone number x 1,000,000 equals the Easting coordinates in international feet
 - Example: all Eastings in Zone 15 (St. Louis zone) will be in the fifteen millions of international feet

		Sar	npled L	MLess than	% Less than	% Less than	%Less than	% Less than	% Less tha
Entire Area	AVg. PPIM	21.7	-22.2	±5 PPM	±10 PPM 83.83%	±15 PPM 97.33%	±20 PPM	±25 PPM	±30 PPM
Municipalities	-4.4	14.5	-17.5	42.52%	88.61%	99.32%	100.00%	100.00%	100.00%

	Out of 114 C Lou	Counties and St uis City
Coor. System	Max (ppm)	Min (ppm)
NAD 83 SPCS	115.4	-143.5
rel. 31 zone LDP	29.3	-35.6

	Out of 114	Counties and	d St. Louis C	ity Percentage	e of Sampled i	Points Under
Coor. System	+/- 5 ppm	+/- 10 ppm	+/- 15 ppm	+/- 20 ppm	+/- 25 ppm	+/- 30 ppm
NAD 83 SPCS	2.22%	4.61%	7.19%	9.80%	12.21%	14.80%
Prel. 31 zone LDP	48.35%	80.22%	96.16%	99.82%	99.98%	Appr. 100.00%
zone LDP	48.35%	80.22%	96.16%	99.82%	99.98%	Appr. 100.00%

What type of surveying practices result in about 5 PPM linear distortion?

- Scaling points with one factor on a GPS project and measuring with GPS to a point with an elevation 100 feet above or below the point at which the factor was derived
- Not having a geoid model
- In a total station:
 - Having the temperature off by 7 or 8 degrees F
 - Or having the pressure off by about a ¹/₂ inch of Mercury

Agriculture.Mo.Go

Agriculture.Mo.Gov

LDP Advantages

- Grid distances closely match the ground distances
- Larger areas covered with less distortion
- Reduced convergence angle
- Clean zone parameter definitions, compatible with common surveying, engineering, and GIS software

LDP Advantages Cont.

- Easy to transform between other coordinate systems
- Maintains a relationship to the National Spatial Reference System (NSRS)
- Cover entire cities and counties making them useful for regional mapping and GIS
- Obtain distances near ground distances without site "calibration" or "localization" to control points

Agriculture.Mo.Go

Agriculture.Mo.Go

Agriculture.Mo.Gos

LDP Advantages Cont.

- Preloaded into machine control grading systems
- Available and coded into popular survey and mapping software
- Work with MODOT VRS and OPUS

LDP Disadvantages

- Will not perform well on very large projects
- Some linear distortion will be unavoidable
- Unfamiliar with new projection parameters
- Learning curve and associated cost for initial familiarization and transformation of existing mapping systems
- Most likely Grid North will be different from NAD83 and NAD27

Surveying in SPCS2022

- Start by checking distortion map of zone/area at project location
 - Determine if scale/elevation factors are needed
- · Zone should be preloaded within software
- Select zone within data collector
- Date collector setup similar to our current process

Agriculture.Mo.Go

Agriculture.Mo.Gov

Status of Zone Layout and Designs

- Designs by NGS
- 159 zones (including 54 statewide zones)
- Designs by state stakeholders
 - 810 zones in 28 states
 - Range from 1 to 88 zones per layer (max in Ohio)
 - Essentially all are "low distortion projections"
- Total = 969 zones for 56 states and territories
 - Number may decrease, but will not increase

S	tatewid	e Zone	Compari	ison
	Are	as within	300 PPM Dis	stortion
Coordinate System	Population	Cities and Towns	Entire Zone Area	Min/Max
NAD 83 UTM 15	65%	47%	38%	-473/+1076
SPCS2022 – LCC Projection	98%	93%	92%	-309/+539
SPCS2022 – OM Projection	96%	97%	97%	-321/+408
0266		mily	Agricu	lture.Mo.Gov

Statewide Zone Advantages

- More geocentric
- Projection surface near the topographic surface
- Less distortion than NAD83 UTM Zone 15
- Easily transformed between coordinate systems
- Covers the entire state useful for regional/statewide mapping and GIS
- Used with MODOT VRS & OPUS

Agriculture.Mo.Gov

Foot Definition Comparison

U. S. Survey Foot (sft) = 1200/3937 Meters (sft = 0.304800609601 Meters) International Foot (ift) = 0.3048 Meters

Distance comparison: 1 Mile = 1609.344 Meters 1609.344/. 0.304800609601 = 5279.99 sft 1609.344/0.3048 = 5280.00 ift

Agriculture.Mo.Gos

Foot Definition Comparison Cont.

U.S. Survey Foot (sft) = 1200/3937 Meter (sft = 0.304800609601 meter) International Foot (ift) = 0.3048 Meter

Coordinate comparison:

ET 18 JWO – Harrison County N: 482,396.207 meters E: 900,585.283 meters N: 1,582,661.56 sft vs. N: 1,582,664.72 ift

E: 2,954,670.22 sft Difference: 6.70'

E: 2,954,676.13 ift

Aariculture Mo

Agriculture.Mo.Go

Agriculture.Mo.Gov

Foot Definition

Deprecation effective Dec 31, 2022
NSRS modernization will happen later

For users of existing NSRS:

Deprecation will have no effect

- U.S. survey foot will still be supported
- Difference in dates will NOT create a problem

• Will give more time to make the transition U.S survey foot will ALWAYS be supported by NGS for State Plane Coordinate Systems of 1983 and 1927

Ref: Retirement of the U.S. Survey Foot Presentation, Geospatial Summit, May 5, 2021 by Michael Dennis of NGS

SPCS2022 Stakeholders

 Missouri Department of Agriculture - Land Survey Program

- Missouri Department of Transportation
- Missouri Director GIS
- Missouri Society of Professional Surveyors

State Plane Coordinate System of 2022 Deadlines: • March 31, 2020 - Requests for zones designed by NGS or proposals for zones designed by stakeholders • March 31, 2021 - Submittal of all final defining parameters for NGS-approved designs by stakeholders

- Finalize all designs in 2022 (maybe later...)
- Official release with rollout of modernized NSRS Likely after 2025

Aariculture.Mo G

Agriculture.Mo.Go

(Per NGS at Geospatial Summit in May 2021)

Land Survey Program

- Department of Agriculture
- Weights, Measures and Consumer Protection agriculture.mo.gov/weights/landsurvey

Land Survey Program

 1251A Gale Drive
 PO Box 937
 Rolla, MO 65402-0937
 Phone: (573) 368-2300
 Fax: (573) 368-2379
 Email: landsurv@mda.mo.gov

References/Websites

- <u>Building a State Plane Coordinate System for the Future</u> by Michael Dennis, NGS https://www.ngs.noaa.gov/web/science_edu/webinar_series/state-plane-
- coordinates-2.shtml
 The Fate of the U.S. Survey Foot after 2022 A Conversation with NGS by
- Michael Dennis, NGS https://www.ngs.noaa.gov/web/science_edu/webinar_series/fate-of-us-
- survey-foot.shtml
 Ground Truth Design and Documentation of Low Distortion Projections for
- Surveying and GIS v. 22 (Dennis 2015) Indiana Geospatial Coordinate System (InGCS) Handbook and User Guide Version 1.05 (Badger et al. 2016)

Agriculture.Mo.Go

Agriculture.Mo.Gos

Agriculture.Mo.Gos

References/Websites (cont.)

- Iowa Department of Transportation's *Iowa Regional Coordinate System Handbook and User Guide* Version 2.10 2014 (Dennis et al. 2014)
 The Kansas Regional Coordinate System, A Statewide Multiple-Zone Low-Distortion Projection Coordinate System for the State of Kansas, (Dennis 2014).
- Minnesota
 - https://www.dot.state.mn.us/surveying/pdf/mncoordsys.pdf
- <u>https://www.dot.state.mn.us/surveying/pdf/projections.pdf</u>
 National Geodetic Survey's, NOAA Manual NOS NGS 5 State Plane
- Coordinate System of 1983, 1995 (Stem 1995) Nebraska
- https://nebldpproject.blogspot.com/

References/Websites (cont.)

- Oregon Coordinate Reference System Handbook and User Guide, version 2.01, Oregon Department of Transportation, Geometronics Unit, Salem, Oregon, USA, (Armstrong, M.L., Singh, R., and Dennis, M.L. 2014)
 <u>State Plane Coordinate System</u> by Michael Dennis, Geospatial Summit May 5,
- 2021, NGS
 The State Plane Coordinate System of 2022: Making It Your Way by Michael
- Dennis, NGS https://www.ngs.noaa.gov/geospatialsummit/2019/presentations/day-1-dennis-spc-of-2022.shtml
- Wisconsin Coordinate Reference Systems Second Edition 2015 (Wisconsin State Cartographer's Office 2015)
- US Department of Commerce, et al. "National Geodetic Survey Class Description." Home, NOAA, National Geodetic Survey, 11 Jan. 2017, www.ngs.noaa.gov/web/science_edu/webinar_series/state-planecoordinates.shtml.

References/Websites (cont.)

- US Department of Commerce, et al. "National Geodetic Survey Main (DRAFT)." Home, 24 Nov. 2008. Web. Accessed 10 May 2018. www.ngs.noaa.gov/datums/newdatums/index.shtml
- US Department of Commerce, et al. "National Geodetic Survey NGS Training and Testing Center Video Library." Home, NOAA, National Geodetic Survey, 16 Dec. 2009, www.ngs.noaa.gov/corbin/class_description/NGS_Datums_video_2_b/
- "Policy and Procedures Documents for the State Plane Coordinate System of 2022." https://www.ngs.noaa.gov/SPCS/policy.shtml
- 1959 Federal Register Notice, Signed by NBS and C&GS directors, approved by Secretary of Commerce, June 25, 1959 <u>https://geodesy.noaa.gov/PUBS_LIB/FedRegister/FRdoc59-5442.pdf</u>

